7 research outputs found

    Evidence of Resistance to Cry34/35Ab1 Corn by Western Corn Rootworm (Coleoptera: Chrysomelidae): Root Injury in the Field and Larval Survival in Plant-Based Bioassays

    Get PDF
    Western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is a serious pest of corn in the United States, and recent management of western corn rootworm has included planting of Bt corn. Beginning in 2009, western corn rootworm populations with resistance to Cry3Bb1 corn and mCry3A corn were found in Iowa and elsewhere. To date, western corn rootworm populations have remained susceptible to corn producing Bt toxin Cry34/35Ab1. In this study, we used single-plant bioassays to test field populations of western corn rootworm for resistance to Cry34/35Ab1 corn, Cry3Bb1 corn, and mCry3A corn. Bioassays included nine rootworm populations collected from fields where severe injury to Bt corn had been observed and six control populations that had never been exposed to Bt corn. We found incomplete resistance to Cry34/35Ab1 corn among field populations collected from fields where severe injury to corn producing Cry34/35Ab1, either singly or as a pyramid, had been observed. Additionally, resistance to Cry3Bb1 corn and mCry3A corn was found among the majority of populations tested. These first cases of resistance to Cry34/35Ab1 corn, and the presence of resistance to multiple Bt toxins by western corn rootworm, highlight the potential vulnerability of Bt corn to the evolution of resistance by western corn rootworm. The use of more diversified management practices, in addition to insect resistance management, likely will be essential to sustain the viability of Bt corn for management of western corn rootworm

    Western corn rootworm abundance, injury to corn, and resistance to Cry3Bb1 in the local landscape of previous problem fields.

    No full text
    Western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is a major pest of corn in the United States. Transgenic corn expressing insecticidal proteins derived from the bacterium Bacillus thuringiensis (Bt) is an important tool used to manage rootworm populations. However, field-evolved resistance to Bt threatens this technology. In areas where resistance is present, resistant individuals may travel from one field to a neighboring field, spreading resistance alleles. An important question that remains to be answered is the extent to which greater-than-expected root injury (i.e., >1 node of injury) to Cry3Bb1 corn from western corn rootworm is associated with rootworm abundance, root injury, and levels of resistance in neighboring fields. To address this question, fields with a history of greater-than-expected injury to Cry3Bb1 corn (focal fields) and surrounding fields (< 2.2 km from focal fields) were examined to quantify rootworm abundance, root injury, and resistance to Cry3Bb1 corn. Additionally, use of Bt corn and soil insecticide use for the previous six years were quantified for each field. Resistance to Cry3Bb1 was present in all fields assayed, even though focal fields had grown more Cry3 corn and less non-Bt corn than surrounding fields. This finding implies that some movement of resistance alleles had occurred between focal fields and surrounding fields. Overall, our data suggest that resistance to Cry3Bb1 in the landscape has been influenced by both local rootworm movement and field-level management tactics

    Evaluation of Pyrethroids and Organophosphates in Insecticide Mixtures for Management of Western Corn Rootworm Larvae

    No full text
    BACKGROUND: The western corn rootworm is an economically important pest of corn. Management tactics include pyrethroid and organophosphate insecticides, which may be applied as a mixture to protect corn roots. The goal of our study was to characterize the effects of pyrethroids and organophosphates alone and in combination on larval corn rootworm mortality and injury to corn roots. We evaluated two insecticide combinations: tebupirimphos with β- cyfluthrin, and chlorethoxyfos with bifenthrin. Using a soil-based, laboratory bioassay, we exposed larvae to five concentrations of the pyrethroid alone, the organophosphate alone, the combined formulation, and a water control. We calculated LC50 values and co-toxicity factors to determine synergism or antagonism between organophosphates and pyrethroids. We also measured adult emergence and root injury in a field experiment that tested tebupirimphos alone, β-cyfluthrin alone, the combined formulation, and an untreated control. RESULTS: Bioassay results indicated antagonism between the pyrethroid and organophosphate at most concentrations for both insecticide combinations. In the field experiment, tebupirimphos alone or in combination with β-cyfluthrin significantly reduced adult emergence and root injury compared to the untreated controls, but β-cyfluthrin alone did not differ from the untreated control for either metric. CONCLUSIONS: These results suggest that, at the concentrations tested, the pyrethroid component of pyrethroid-organophosphate mixtures may not contribute to a reduction of rootworm emergence or root injury. While these pyrethroids may confer a management benefit for other pests, such as seedcorn maggot, the concentrations of pyrethroids present in current formulations of these mixtures are likely too low for effective rootworm management
    corecore